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ABSTRACT

The principal features of this document are the analysis of a large dual-reflector
antenna system by vector Kirchhoff theory, the evaluation of subreflector
aperture-blocking, determination of the diffraction and blockage effects of a
subreflector mounting structure, and an estimate of strut-blockage effects.
Most of the computations are for a frequency of 15.3 GHz, and were carried out
using the IBM 360/91 and 360/95 systems at Goddard Space Flight Center.

The Fortran IV computer program used to perform the computations is of a
general and modular type so that various system parameters such as frequency,
eccentricity, diameter, focal-length, etc. can be varied at will. The parameters
of the 60-foot NRL Ku-band installation at Waldorf, Maryland, were entered into
the program for purposes of this report. Similar calculations could be performed
for the NELC installation at La Posta, California, the NASA Wallops Station
facility in Virginia, and other antenna systems, by a simple change in IBM con-
trol cards. A comparison is made between secondary radiation patterns of the
NRL antenna measured by DOD Satellite and those obtained by analytical/numeri-
cal methods at a frequency of 7.3 GHz.

Giii
9DCPg



CONTENTS

Page

GLOSSARY OF NOTATION ......................................... viii

INTRODUCTION .................................................... 1

FORMULATION OF THE SCATTERED FIELDS ...................... 2

GEOMETRY......................................................... 3

RESULTS OF THE "LITERAL" METHOD ........................... 5

SUBSYSTEM PATTERNS ........................................... 6

RESULTS OF THE "EQUIVALENT SOURCE" METHOD ............... 11

SUMMARY ........................................................ 13

ACKNOWLEDGMENTS ............................................. 14

REFERENCES ..................................................... 15

APPENDIX A - SECONDARY BLOCKAGI CALCULATIONS .......... 16

APPENDIX B - A COMPARISON OF MEASURED DATA
WITH ANALYTICAL RESULTS ..................... 18

ILLUSTRATIONS

Figure Page

1 NRL Microwave Space Research Facility (Waldorf, Md.) ....... 22

2 Far-field Radiation Pattern (f = 1.53 GHz) .................... 23

3 Far-field Radiation Pattern (f = 15.3 GHz) .................. 24

4 Hyperboloid Radiation Pattern at R = F (LI, = 1.25)........... 25

PRECEDING PAGE BLANK NOT FILMEDvV



ILLUSTRATIONS (Continued)

Figure Page

5 Hyperboloid Radiation Pattern at R = F (LI1 = 0.600) ......... 26

6 Hyperboloid Radiation Pattern at R = F (LI 1 = 0.300) ......... 27

7 Hyperboloid-plate Radiation Pattern at R = F
(LI1  = 0.300, LI '  = 1.00) .................................. 28

8 Far-field Reference Pattern ................................ 29

9 Far-field Pattern Showing Hyperboloid Blockage Effect ........ 30

10 Far-field Pattern Showing Hyperboloid-plate Diffraction
and Blockage Effects ...................................... 31

11 Far-field Pattern Showing Hyperboloid-plate Diffraction
and Blockage Plus Truss-blockage Effects .................... 32

12 Secondary Blockage ....................................... 33

13 7.3 GHz Radiation Pattern (Measured) ....................... 34

14 Reflector-System Geometry ................................ 35

15 Hyperboloid-plate Radiation Pattern at R = F (LI 1 = 0.3)
Using Interpolation ........................................ 36

16 Far-field Pattern (f = 7.3 GHz) ............................. 37

17 Hyperboloid-plate Radiation Pattern at R = F (LI 1 = 0.3)
Without Interpolation ...................................... 38

18 Far-field Pattern (f = 7.3 GHz) ............................. 39

19 Hyperboloid-plate Radiation Pattern Without Interpolation
on Parabolic Locus (LI, = 0.3).............................. 40

20 Far-field Pattern (f = 7.3 GHz) ............................. 41

21 Hyperboloid-pfate Radiation Pattern at R = F (LI 1 = 0.30)
Without Interpolation ...................................... 42

vi



ILLUSTRATIONS (Continued)

Figure Page

22 Far-field Pattern (f = 15.3 GHz) ............................ 43

23 Hyperboloid-plate Radiation Pattern Without Interpolation
on Parabolic Locus (LI, = 0.3) ............................. 44

24 Far-field Pattern (f = 15.3 GHz) ............................ 45

vii



GLOSSARY OF NOTATION

Symbol Meaning

k wavelength

cpu central processor unit

ATS Applications Technology Satellite

GHz giga-Hertz

E (x', y', z'), H(x', y', z') scattered electric and magnetic vector fields

x, y, z Cartesian coordinates

r, 8, spherical coordinates

fi unit normal to surface

Solution to wave equation

V vector gradient of i

ds differential area

, E constitutive parameters: magnetic permeability,
inductive capacity

w angular frequency

j imaginary operator = vCT

e i, hi electric and magnetic polarization vectors

k wave number

1r, 1 e, 10 spherical basis vectors

i, j, k Cartesian basis vectors

F focal length

i surface

a, 5 radial and angle variables of a cylindrical net

S source strength

N exponent of directive source

:5 directive point source

v polarization moment
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Symbol Meaning

a, /3, y Euler angles

P, feed displacement vector with components (x,, y~, z )

D diameter

a, c parameters of a hyperboloid

LI 1, LI2  sampling resolution on surfaces y,, y 2 respectively
in wavelengths

EOS Earth Observation Satellite

R, 6, F spherical coordinates for observing feeds and sub-
systems

A area

z 1, z2  complex numbers

BW beam width

SLL side-lobe level

db decibel

IIK reference plane

A increment

f frequency

phase (note context)
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DIFFRACTION STUDIES APPLICABLE TO
60-FOOT_ MICROWAVE RESEARCH FACILITIES

INTRODUCTION

The Antenna Systems Branch, Network Engineering Division at Goddard Space
Flight Center has developed, and maintains, a general-purpose digital computer
program for calculating diffraction patterns of reflector-type antenna systems.
A dual-reflector capability was achieved about one year ago to compute both
Fresnel and Fraunhofer diffraction patterns in either the transmit or receive
mode of operation. The program integrates over charge and current distribu-
tions on reflector. surfaces in ordinary physical 3-space to produce scattered
electric and magnetic field magnitudes, wavefronts, and time-average Poynting
vectors, using a complex-vector Kirchhoff approach with Kottler boundary in-
tegral, satisfying Maxwell's equations.

Discussions between GSFC, NRL, and NELC personnel indicated that the subject
diffraction program was well-suited for providing the following characteristics:
directive gain, aperture efficiency, spillover efficiency, diffraction effects from
mounting plates, and an estimate of secondary blockage effects due to the hyper-
boloidal subreflector and the associated support struts for large microwave
facilities at K-band. Data on beamwidth, side-lobe levels and cross-polarization
components are also provided by the program. A point of concern at the outset
of this effort, which included a comparison of computed results with actual
measured patterns obtained via DOD Satellite at 7.3 GHz, was the electrical size
of the main aperture at 15.3 GHz. The GSFC program had given excellent results
for dual-reflector systems with reflectors around 100 X by 100 k, and single-
reflector systems with reflectors approximately 500 X by 500 X, but the present
study of the Waldorf antenna, Figure 1, involved an aperture approaching 1000 X
by 1000 X and was also a dual-reflector configuration.*

Computation of the diffraction patterns of large K-band dual reflector antennas,
particularly when appearing in array, had presented a challenge for some time
in TDRSS studies. The analysis of the 60-foot NASA/NRL/NELC microwave in-
stallations was, therefore, undertaken to determine whether or not it was feasible
to obtain meaningful results for such a problem with the existing integration
algorithm. Annexation of the strut-blockage subroutine via a Babinet's principle
was an added complication that had received only limited verification at the out-
set of this study. The composite subreflector posed no difficulty as this capability

*The NRL Waldorf installation was funded by NASA to collect ATS-5 rainstorm data at 15 GHz.
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had been tested extensively several years earlier. Some modification of the
basic program was anticipated - and required - due to the inevitable trade-off
between computer cpu-time and accuracy. Computer program development is
usually determined by actual requirements and applications, and in this instance
direct benefits were realized for EOS 3-reflector passive multichannel micro-
wave radiometer (PMMR) antenna computations, ATS-F diffraction studies,
STDN 40-foot and 85-foot antenna analyses, and TDRSS trade-off studies for
determination of the antenna payload.

FORMULATION OF THE SCATTERED FIELDS

In the transient mode of operation the fields due to the main or parabolic reflector

(y 2) of the system are obtained from

E(x',y', z') f [(-x 2 ). V] V ds- j 1 (nxH 2) V ds,

1
H (x', y', z') - 4 (n 2xH 2 ) x V ds,

Y2

where

-jkr

r

and

taking ir in a local context on the reflecting surface.

Since only the magnetic field H 2 is required on y 2 , the integral

H 2 (xy2') - (nxH 1) x V¢ ds
S 1
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over the hyperbolic subreflector (yl) is sufficient to obtain the illumination of ,2
due to yl. The subsystem surface may be extended to include the flat mounting
plate (y).

The preceding formulation is applicable in both far-field (Fraunhofer) regions
and intermediate near-field (Fresnel) regions, and is well-suited to dual or

multiple-reflector systems, where a point on one surface may lie in the Fresnel

region of another surface over which an illumination distribution is being inte-

grated. It can be shown that the formulation used here is identical to the

Kirchhoff-Kottler and Franz formulations, but is better-suited to numerical

integration methods than the latter.*

GEOMETRY

The geometry for the problem is shown in a photograph designated Figure 1.

Input parameters and surface equations are as follows.

Paraboloid (72)

o2
x sin 5, y = -0 cos 5, z = - + ZIP

ZP = -F = -18.0'

Uin = 30.0'
max

o~ = 0.0' (initially, without obscuration)

Hyperboloid (y,)

x = sin 5, y = -r cos (, z = c(l+ a2/a2). + Z1H

Z1H = -CE = -5.87'

a = 4.03'

c = 4.27'

*See Ref. 1, 2, 3, and 4.

3



0max = 3.00'

0o = 0.0'

Mounting Plate (y' )

x = o sin a, y = - cos 5, z = cco + Zle

z o = 0.0'

c = 0.0

co = 3.00'

marx = 4.41'

Feed (5)

f = S cosN e , directive field

S = 1.0 * source strength

N = 33.2 approximately -10 db edge taper on y,

P(I) = 1.0, P(J) = P(K) = 0.0 - polarization mornents

0

a = = = 0.0 = Euler angles for feed

x, = y, = 0.0', z = -2c = -11.7' - feedlocation

F/D = 0.30 t F - number of paraboloid

The subroutines for the paraboloid and the hyperboloid require no elaboration,
however, the subroutine for the flat mounting plate deserves a word of explana-
tion. In the physical installation the plate is flat and is situated in the focal-
plane of the paraboloid. From the point of view of the simulation, the electro-
magnetic scattering from the plate is due to that portion of the plate which is not
shielded from the feed by the hyperboloid. The plate can therefore be thought of
as having a central hole of radius o, = 3.00', the radius of the hyperboloid.

Although the plate is square, 93.46 inches along an edge, the equivalent area of
a flat circular disc was used to compute the effects of the mounting plate. To be

4



more precise, the annulus of a flat circular disc was used in the simulation.
This permitted the utilization of an existing subroutine (cone) which exhibited
rotational symmetry. All integration over y, and y,' was then done by means
of a cylindrical (oc, ) net, and a Cartesian (x, y) net for the square plate was
avoided. The parameter cc is the inverse-slope of a cone; the latter degenerates
into a flat disc when c c vanishes. Choosing zj1 = 0.0' situates the flat disc in
the focal plane.

RESULTS OF THE "LITERAL" METHOD

Under ray optics, an ordinary Cassegrain system constitutes a one-to-one map-
ping from the subreflector onto main reflector; Under diffraction, the illumina-
tion of the main reflector is obtained from a many-to-one mapping of the illumi-
nation distribution (charge and current) of the subreflector onto the main
reflector. This many-to-one mapping has been termed the "literal" method
since it is the natural result of redundantly applying the Huygens principle to
multiple-reflector systems. The reader may wish to assess the awkwardness
of this approach when three or more surfaces make up the system.*

Since application of the "literal" method was expected to result in excessive
cpu-time and core requirements for a dual-reflector system in which the main
reflector exceeded 800 X by 800 k, an approach which regarded the prime-feed/
subreflector combination as an effective. "equivalent source" was 'favored. Fig-
ure 2 shows the far-field pattern via the "literal" method for this Cassagrain
system without mounting-plate, central obscuration, or strut obscuration at a
frequency of 1.53 GHz. Results appear acceptable out to 3 degrees in the theta
domain for this low-frequency test case obtained at a sampling of LI1 = 0.25
and LI = 2.5 on the subreflector and main reflector respectively. The far-field
pattern at 15.3 GHz was also obtained via the "literal" method, using the same
input parameters as before, and is shown as Figure 3. This result was obtained
for LI1 = 1.25 and, LI 2 = 6.00, storing the illumination values on y, and y 2 , and
taking advantage of the biplanar symmetry that exists for the problem with re-
spect to illumination on the reflector surfaces. Results appear credible out to
0.3 degrees in the theta domain although null-filling is in evidence at:N 4. (Null-
filling is not certain at N 2 since AO = 0.005 degree does not resolve a good
minimum or true null unambiguously.) Considering that a ten-fold increase in
frequency occurred between Figure 2 and Figure 3, the side-lobe structure out to
0.3 degrees corresponds to 3.0. degrees of the previous computation. The onset

*A three-reflector "telescope" system was studied for the Earth Observation Satellite (EOS),
however, the '"literal" method was avoided due to prohibitive cpu-times involved.
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of failure of the solutions due to inadequate integration sampling (LI 1, LI2 ) is
apparent from the null-filling, anomalous null-to-null sidelobe angular width,

sidelobe level, and departure of side-lobe peaks from an asymptote or monotonic

law of descent. It can be seen from Figure 2 and Figure 3 that degradation sets

in progressively for larger values of theta (8).

Since the practical limits of cpu time and core had already been exceeded in

obtaining results at 15.3 GHz, Figure 3, and since the effects of the flat mounting

plate and struts had not yet been included, the "literal" method was abandoned

for the remainder of this particular study. The "equivalent source" method

which derives scattered field data from the prime-feed subreflector combination

was adopted, and even this approach was found to be demanding with respect to

epu-time and core when the effects of the mounting plate were included. The

annular area of the mounting plate was found to be about equal to that of the

hyperboloid. Integration sampling intervals somewhat greater than those pre-

scribed by the antenna analogue to Shannon's sampling theorem* were finally

used, but this precedes the development.

SUBSYSTEM PATTERNS

The "equivalent source" method is now detailed without inclusion of the annular

mounting plate to illustrate some of the problems and show the reader the basis

for the sampling (LI1) on the subreflector (Yl). First of all, there is the question

of the range (R) at which field values scattered by the prime-feed/subreflector
combination should be reevaluated. See the expression for H2 (x , y, , z).
Clearly, thevalues on a parabolic locus (Y2) are ultimately required, but this

view obscures the fact that the prime-feed/hyperboloid subsystem behaves as a

virtual spherical point-source at F. A large value of R, to simulate infinite
range, has some merit. It is possible, however, that in general there may be

near-field considerations since any point on Y2, at 15.3 GHz, is in the interme-

diate near-field of y, if the physical dimensions of the latter are regarded.

Another viewpoint is that the effective diameter for a hyperboloid fed at the con-

jugate focal point is not anything like the physical diameter, but is essentially

zero (i.e. a point source) in R = 2 d2/X, the usual criterion for discerning "near-

field" and "far-field".

The range (R) was initially chosen equal to the focal distance (F) of the paraboloid

for the "equivalent source" method since this allows one to observe the purity of

the wavefront on a circular arc whose center is the phase center of the prime-
feed/hyperboloid subsystem being studied. This is especially convenient because

*Ref. 5, page 321.
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the nearly constant phase on this spherical arc (R = F) can now be used to
further develop the "equivalent source" method. Both field phase and amplitude
on this arc are placed in core for a preselected resolution in theta (A, = 20)
between the vertex of /2 and the geometrical bound or edge of 72. This "equiva-
lent source" data is then modified by the factor e-jkp/p which effectively pro-
vides for the differential phase between the vertex wavefront (R = F) and the
paraboloid (72) as well as the space divergence of the amplitude of the illumina-
tion arriving at 72. This is in lieu of computing the difference between the arc
R = F and p to the paraboloid for each differential (incremental) area.

The absolute phase of the source has then been changed in the amount e-j kF and
the original source strength has been multiplied by 1/ F, both of which are
irrelevant with regard to the final diffraction pattern. This can be seen as follows.

Assume a virtual point source of strength So, initial phase b0 , and directivity J
such that

(So eJo ) [(So ejO 0 ) e T,

spherical wave expanded spherical wave expanded
out to y 2  out to R = F

where T is the transformation which rigorously preserves both field phase and
amplitude in going from the arc R = F to the reflector 7 .

T ejkp) (F e+ kF)

Now the first factor of T was used, as stated previously, but the second factor
was ignored (i.e., read-in "unity"). Failure to include the second factor there-
fore multiplies the assumed source by the reciprocal of that factor:

[So e j °'o F] [e-F]
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so that the omission results in nothing more than a reinterpretation of the real

source as

In other words, amplitude and initial phase of the assumed source have been

modified in an irrelevant manner. The validity of the preceding discussion is

further borne out by a comparison of the secondary radiation patterns by the
"literal" method with those of the "equivalent-source"' method using the prime-

feed/hyperboloid subsystem. Obviously, the approach is predicated on a spheri-

cal law of divergence between the arc R .= F and the value p on the main re-

flector (Y2).

Figure 4 shows the (relative) phase and amplitude of the totality of the Huygens

wavelets scattered from the hyperboloid (Y7) onto the spherical arc (R = F = 18')

passing through the vertex of Y2 , for a sampling interval of LI 1 = 1.25. Note the

geometrical bound of y2. The result is extremely coarse, however, surprisingly

good secondary patterns can sometimes be obtained from the main reflector

with such an "equivalent source". Phase dominates problems of this type, and

rather large amplitude variations are a lesser consideration. In Figure 4 the

phase excursions approach i180 degrees, and it is remarkable that good results

can be obtained for such departure from a pure spherical wavefront.

Figure 5 shows the (relative) phase and amplitude of the scattered electric field

on R = F = 18' as for Figure 4, but LI, = 0.600. It can be seen that the large

"spike" in amplitude has diminished near 0 = 1800, and the variations, generally,
are smaller. More importantly, the phase has become constant to within L20 de-

grees or so for 1000 < E < 1400, which represents considerable energy in an

annular region of the sphere R = F = 18'. The phase variations still approach

±180 degrees in the domain 1400 < 0 < 1800. Also note the behavior of the phase

plot outside of the geometrical bound 900 < 0 < 1000. It is still violently oscil-

latory, but less so than in the preceding instance.

Figure 6 shows the (relative) phase and amplitude of the scattered field in R =

F = 18' for LI1 = 0.300, the sampling used in most subsequent dual-reflector

computations. The improvement over Figure 5 is striking. Both phase and

amplitude closely approach the classical ray optics concept for scattering by the

subsystem. Over the domain of interest, 1000 < 0 < 1800, the amplitude is a

monotonically decreasing function with a ripple of approximately ±1 db, while

8



the phase plot or wavefront exhibits a variation of about ±10 degrees. The scat-
tered values of Figure 6 were considered "stable" solutions with respect to the
integration sampling (LI1 ). Once stored, these values are not computed again
even though main reflector obscuration by the hyperboloid and/or the struts is
considered subsequently. None of these values are computed anew for different
secondary pattern cuts k = 0, ¢ = 450, ¢ = 900, etc.

Figure 7 shows the subsystem phase and amplitude pattern at R = F = 18' with
the flat annular mounting plate included. The reader will notice that the hyper-
boloidal part of the subsystem was sampled at LI, = 0.300, but the flat .annular
mounting plate was sampled at LI ' = 1.00 in carrying out the integration process.
It was determined by means of separate calculations with the program that the
differences between LI I = 0.500 and LI 1'.= 1.00 were negligible, therefore, the
coarser interval was selected in forming this subsystem pattern in the interest
of cpu-time reduction.

The phase and amplitude of the backscattered fields in Figure 7 are perturbed
by the influence of the flat annular disc.* In the region 1000 < O < 1600, which
is between the geometrical bounds of y, and /2' the amplitude exhibits a normal
monotonic descent over most of the area of interest. The exception is the interval
1400 < O < 166'. The phase is constant, as required, to within ±15 electrical
degrees or so over most of the region of interest, \however, it varies -50 electri-
cal degrees in the excepted interval. Confining the discussion to the interval
1000 < 0 < 1660 between the geometrical bounds, anid regarding areas on a unit
sphere through which power is flowing, the percentage of perturbed to unperturbed
power is estimated (without respect to power density variations) by areas alone.

A ds R sin 1 d d ( - 7T cos 0 1

ATOTAL - 2 (cos 1660 - cos 1000)

APERTURBED = - (coS 1660 - cos 1400)

ATOTAL
x 100 25%

AP ERTURBED

*See Appendix B.
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It is anticipated, therefore, that the Kirchhoff integration over the illumination

distribution on Y2, using Figure 7 data, will not greatly affect the far-field radia-

tion pattern.

The polarization of the "equivalent source" enters the problem when the integral

H2 (x 2 ', y , z2) is evaluated at R = F. It should be noted that the field quantities

are complex-vectors due to the unit polarization vectors (hi) of the real or

physical source. Let the components of the source polarization moment (desig-

nated P(I), P(J), P(K) in the program input) be (v x, Vy, vz) = v. Then the mag-

netic polarization vector incident or Y, is

S- pxv

and the electric polarization vector is

P X (v Xp)el - P x(. 7X)

Only hi is required in the present computations, although e 1 is probably more
familiar and more easily visualized, since only incident magnetic fields H1 =

H1 Ih, appear in the diffraction integral

H2 X , 1  - (n1 x H1) xVqj ds

at R = F.

The "equivalent source" method is relatively straightforward, with one possible

exception. It has been shown that the backscattered illumination is a set of

complex-vectors, and the vector character of the problem enters via the unit

polarization vector (h1 ). The complex character of the problem is associated

with the time domain or phase of the fields at various points. Although the present

computations were not affected, a delicate question arises concerning intermedi-

ate complex values for analogue data. For example, the E-plane, H-plane eccen-

tricity of the backscattered fields were disregarded here, and the spherical cut

(r, 8, ¢) = (18', 8, 00) provided phase and amplitude data for all other cuts via a

trivial interpolation between , = 00 and ¢ = 3600. Suppose the pattern
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eccentricity had been large. Additional cuts at A b = 45" or = 15", etc.
could have: been employed to display the character of the backscattered fields.

This would have raised the following question.

What is the "average" of two complex numbers (ordered pairs)? How does one
interpolate or find an intermediate complex number between two given complex
values ? One approach might be to take the average of the magnitudes and the

average of the arguments or phase angles. Another approach might be to aver-
age the real and imaginary parts separately to produce an intermediate value.

Unfortunately, the two approaches lead to different results for an arbitrary
choice of "nearly equal" complex numbers: z , z 2. Both methods can be very
disappointing from a practical point of view, not to mention the rigorous point of

view. It is possible to obtain such interesting results as an argument or phase

which is approximately 7 radians different from the argument of z1 and z 2.
Also, it is possible to obtain an amplitude which is either literally zero or ap-
proximately zero even though the magnitudes of z 1, z 2 were arbitrarily large!
An area of difficulty.has been identified here, however, the impact on the present
problem is negligible. Many "cuts" on analogue data relieve the severity of the
problem as do a nearly spherical wavefront and small E-plane, H-plane eccen-
tricity.

RESULTS OF THE "EQUIVALENT SOURCE" METHOD

The reference pattern, in the following sequence of 15.3 GHz far-field radiation
patterns from the dual-reflector system, is Figure 8. As stated previously, sub-
reflector sampling was stable at LI 1 = 0.300. It was found that main reflector

sampling was stable at LI 2 = 6.00 if the first three or four sidelobes only were
required for study.* Beamwidth (BW) equals approximately .070 degree, and the
first sidelobe level (SLLt) is approximately -25.5 db below the beam maximum.

The first departure from the reference pattern is Figure 9, which shows the

effect of central obscuration due to the hyperboloid (oo = 0.0', -max = 3.0').
The range of integration over Y2 is now restricted by o = 3.0', amax = 30.0'.
A weak interferometer effect is anticipated and observed. (BW 2 .070 degree,
SLL 1 " -23.0 db.) A discussion of directive gain degradation is deferred to a
summary at the end of this section.

*Grating lobes of classical array theory do not appear due to the spatial distribution of the LI
samples on the polar (q, C) net.

11



The second departure from the reference pattern is Figure 10, and shows the
effect of central obscuration due to the hyperboloid and the flat mounting plate
bounded by ,o = 0.0', ,,m = 4.41'. The range of integration over 72 is now
restricted by co = 4.41', -max = 30.0'. In this calculation the backscattering
from the annular mounting plate is also included. Recall Figure 7. It can be
seen that beamwidth is negligibly affected relative to the preceding Figure 9,
but the sidelobe structure has been altered significantly. (SLL 1  - 19.5 db.)

The third departure from the reference pattern is Figure 11, and is the "com-
plete" simulation of the physical structure for this report. Hyperboloid and
mounting plate obscuration as well as scattering are present as for Figure 10,
but strut blockage has now been taken into account. Beamwidth is not altered
significantly, and has narrowed slightly, if anything. Sidelobe structure has
taken on some unusual characteristics. Pattern level changes are not very large.
(SLL 1 2 - 19.2 db.) The 4 = 900 cut,\not shown, closely resembled the ¢ = 00

cut of Figure 11 in all except the fine detail. A ; = 450 cut, also not shown, ex-
hibited relatively high sidelobes (SLL, - 17.5 db).

The level of the electric field E, (main polarization) for the preceding calcula-
tions, Figure 8 through 11, as derived from the Kirchhoff integration compare
as follows.

Figure 8 reference pattern - 94.529 db

Figure 9 hyperboloid obscuration included - 94.683 db

Figure 10 hyperboloid and mounting-plate
obscuring and scattering - 94.726 db

Figure 11 complete system with (secondary)
strut blockage - 95.030 db

The implication of these values is that elements of the system degrade the gain
approximately as shown below.

hyperboloid obscuration 0.15 db

mounting-plate effects 0.04 db

spar obscuration 0.30 db

It appears that the combined gain degradation is about 0.5 db and the mounting
plate, though comparable in area with the hyperboloid, has a negligible influ-
ence. Details of the development leading to the obscuration estimates can be
found in the Appendix A of this report. Cross polarization components are a nat-
ural by-product with the GSFC diffraction program since the vector integration
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in Cartesian coordinates leads to fields which are simply projected onto the
spherical basis vectors to produce main and cross-polarization components at
the close of the calculations. None of the cross-polarization data are presented
here as no degradation problem was noted in this characteristic of the system.

The preceding results demonstrated that the existing GSFC diffraction program
was capable of dealing with large dual-reflector Ku-band antenna systems. A
credible beam solution was obtained for the 60-foot Cassegrain installation and
such considerations as cpu-time, core-requirements, significant digits, accuracy,
etc. did not individually or collectively present any insurmountable problems.
In a sense, the body of this report represented a first milestone. A secondary
objective was the correlation of the computed results with a good Ku-band field
measurement for precisely the same system.that had been simulated. This ob-
jective was not realized since reliable 15.3 GHz data for these sites did not be-
come available, even though considerable interest existed concerning the shape
of a Ku-band pattern that was influenced by subsystem obscurations, a large
mounting-plate, and strut blockage. Measured field-pattern data did become
available at a lower frequency, however, and it was decided to simulate this con-
figuration also by means of the diffraction program to obtain at least one com-
parison between the analytical/numerical approach and field practice.

The low-frequency (C-band) comparison is detailed in Appendix B of this report.
It was determined that certain deficiencies existed in the initial analysis when
the mounting-plate was included, but only the far-out sidelobes were significantly
affected. Appendix B also includes the results of a 15.3 GHz simulation using the
improved analysis.

SUMMARY

This report has attempted to illustrate some of the practical problems and solu-
tions for a dual-reflector geometry that was complicated by a compound sub-
reflector, a central aperture obscuration, and strut blockage of the main aperture.
Perhaps the outstanding obstacle was that the paraboloidal reflector dimensions
for this Cassegrain system, in wavelengths, precluded utilization of the "literal"
method of Huygens under a Kirchhoff-Kottler type of formulation. A fundamental
difficulty concerning the interpolation of complex numbers was encountered. In
addition, it was shown that expansion of wavefronts from a spherical locus cannot
proceed by means of a single, simple\spherical divergence rule when multiple
phase-centers are encountered, The degradation of results in such cases will
depend on the location and weight of those phase centers. An estimate of strut
blockage effects was included, and this was based on a simple Babinet principle
which deleted umbral regions for the Kirchhoff integration. It was noted that
shadow updating is not required when the sidelobe structure of interest lies in a
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small angular region away from the system axis. Primary blockage, as viewed
from the virtual origins of the subsystem, was not considered. Mutual coupling
effects were, likewise, not considered.

The subjects of system gain and directive gain were not covered comprehensively
since the principal objective was the computation of pattern shape or form. Ob-
viously the application of the definition of directive gain

P (0, ¢)
GD

4--T J P (6, 0) sin O dO do

over the half-space containing the radiation pattern of this system would be ex-
tremely costly in cpu-time. A comparison method, based on the notion of a de-

generate paraboloid (F = -) of identical diameter and uniform phase, amplitude,
and polarization illumination might be employed successfully here. An estimate
of gain degradation due to hyperboloid obscuration, mounting-plate effects, and
span obscuration was included. A linear polarization state was assumed through-
out for convenience.

The 7.3 GHz satellite data for the Waldorf, Maryland installation, as furnished by
the U.S. Naval Research Laboratory, greatly stimulated interest in the simula-
tion. A valuable comparison between "theory" and "practice" lead to the explora-
tion of several methods for computing theidiffraction patterns. All approaches
used here simulated the main beam and first sidelobe level fairly well. Signifi-
cant differences between methods lay in the far-out sidelobe region. Techniques
evolved in this study are being applied to diffraction problems for ATS-F, STDN,
EOS, and TDRSS.

Diffraction studies are being continued, however, the investigation of the present
configuration is terminated. This is an interim report.
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APPENDIX A

SECONDARY BLOCKAGE CALCULATIONS

Figure 12 depicts a general secondary blockage or obscuration example 02.
For high-gain, small beamwidth problems the interesting features of the radia-
tion pattern do not lie far from 8 = 00 in the 8-domain, and the square blockage
area can be taken as 0, without serious error. An accurate projection of the
support trusses is not attempted in Figure 12 which illustrates only the general
nature of the problem and its solution. The obscuration 01 can be taken to
represent the hyperboloid and square mounting plate encountered earlier in this
report. In evaluating the Kirchhoff-Kottler class diffraction integral over y2 it
is sufficient, for a first-order estimate of blockage effects based on a Babinet's
principle, to delete the area O0 in the integration for the scattered field.

E(x',y', z') 7- n2r x H2)V V] ds - j 4--. (n2 x 2 ) 
b ds

2- 01 '2-0

In cases where lower-gain, larger-beamwidth problems are encountered, the
same Babinet's approach requires an up-dating of the shadow for every observer
position (-, 0, ¢) = (R, 0, ¢). Figure 12 illustrates how the physical obstacle
has a new "shadow" or umbral region on 72 for every 0 # 0. A convenient
method of dealing with this situation, which is complicated by the fact that the
integration for E (x', y', z') is actually taken on the surface y- and the shadow
contours may be quite general in any practical case, is to introduce a reference
plane (IIK) 1

For a given observer position (.o, 8, €), the area to be deleted from the integra-
tion (02) is identified on 72 by its boundary contour (C2 ). These points can be
projected into the reference plane (IIK) to form O . Where a large number of
obscurations are present this method is especially convenient, since all deletions
can be accomplished by means of a Cartesian net on IIK. The true area deleted
on y, is related very simply to the projected area in IIK via

AS = sec y* AA

(increment of area on Y2 ) (increment of area on 11 K)

1Reference 6, p. 208.
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where the angle Y* is obtained from the dot product between the unit normal (ii2)
to the surface y 2 and the basis vector t.

cos y* = n 2 k

It is also possible to employ curve-fitting to the contour C2 on IIK in the deter-
mination of AA.

The preceding ideas were used in the present report to estimate the effects of
main reflector secondary obscuration by the hyperboloidal subreflector, the flat
mounting plate, and the 14-inch diameter trusses. Primary obscuration was not
included at this stage of the development. Multiple scattering was also ignored.
Methods of estimating current distributions on support trusses, and computing
the scattered fields of members whose dimensions in terms of a wavelengths are
sometimes small, have been considered, but not implemented. Since the directive
gain for the antenna was very high, and the beamwidth very small, all of the side-
lobe structure of interest was observed for 00 <L < 0.500 at 15.3 GHz and 00 <
O < 0.800 at 7.3 GHz. The obscurations or "shadows" due to subsystem and sup-
port struts were therefore not updated with observer angle.

17



APPENDIX B

A COMPARISON OF MEASURED DATA WITH ANALYTICAL RESULTS

At the conclusion of the series of 15.3 GHz computations contained in the body of

this report it was determined that only 7.3 GHz radiation-pattern data would be

available for this analysis. Only the "complete" configuration which included

mounting plate, subsystem obscuration, and strut blockage effects was recom-

puted at 7.3 GHz. The results were compared with measured data, 0 = 00 cut,

obtained via DOD Satellite Number 16. Figure 13 shows the measured data, pro-

vided by the U.S. Naval Research Laboratory. An undetermined amount of noise

can be seen for signal levels approximately 20 db below the beam maximum.

Since reduction of the simulation frequency from 15.3 GHz to 7.3 GHz eased

the core and cpu requirements significantly, a valuable re-evaluation of the tech-

niques used in the body of the report could be made. Two obvious areas of ex-

ploration were considered. First, a study of the effects of interpolation of the

backscattered fields from the subsystem composed of a hyperboloidal cap and a

flat mounting plate was made. The theta (8) increment used in Figures 4 through

7 was AO = 0.2 degrees implying approximately 40 data points in the domain of

interest (1000 < 0 < 1800). For a sampling criteria of LI 2 
= 3.0, however, at a

wavelength of 0.06431' (15.3 GHz) the amount of data required along a 30-foot

parabolic arc is approximately 300 points. Ordinarily this poses no special

problem when the subsystem behaves as a virtual point source. Introduction of

the flat annular mounting plate perturbed the spherical wavefront, see Figure 7,

therefore the required interpolation of field data is no longer empty.

Second, a study of the assumption that the backscattered data from the hyper-

boloidal cap and flat annular mounting plate could be computed on the arc R = F,
and then expanded as a spherical wave up to the paraboloidal surface, was under-

taken. As mentioned previously, there is some justification for attempting to

observe the subsystem fields on a circular arc. The spherical wavefront, or

slight departures from it, can be displayed. A decision can then be made relative

to the subsystem sampling (LI1 ). Furthermore, a parallel experimental effort

would logically utilize a circular arc such as R = F to probe the subsystem fields.

If ray optics is used to identify the virtual origin of the subsystem fields, see

Figure 14, the conclusion is that the hyperboloidal cap has a unique phase center

situated at the focal point F, but the flat annular mounting plate has a unique

phase center a distance Z = FF* from the focal point. These phase centers

have, in general, different amplitude weighting-factors and initial phases asso-

ciated with them.
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In view of the preceding, the expansion of the subsystem fields according to a
spherical law, with phase center at focal-point F, is difficult to justify. Since
one does not a priori know the location and weight of the various phase centers
and expansion about multiple phase centers would be tedious, requiring eventual
superposition at the paraboloid, it seemed expedient to compute the subsystem
backscattered fields directly on the parabolic locus of the main reflector via
diffraction theory. A parallel experimental effort should also proceed along the
parabolic law which is to be illuminated, an undesirable complication which
would require a separate measurement dependent on each paraboloidal F/D ratio
to be employed.

In order to identify the variations introduced by the alternative methods of com-
puting the backscattered phase and amplitude of the fields from the compound
subsystem, the 7.3 GHz computations were first done with interpolation on a
spherical arc (R = F). The amount of data in the domain of interest (1000 < a <
1800) was approximately 40 points. The amount of data required on the 30-foot
parabolic arc for k = 0.13' (7.3 GHz) is approximately 100 with LI 2 set at 3.0
for Kirchhoff integration. It can be seen that the interpolation is still significant
but less critical than at 15.3 GHz. See Figure 15. Four vertical lines on Fig-
ure 15 represent the geometrical bounds of the problem. The two outer bounds
are the edge of the main reflector and the obscuration due to the subreflector,
while the inner bounds show the extremes of the rays originating at the mounting
plate under a ray-optics analysis. Figure 16 presents the far-field pattern for
the complete Cassegrain system. This result exhibits a monotonic descent in the
sidelobe structure which is not seen in the measured data. Due to the presence
of noise in the measured pattern, the absolute signal level beyond the first side-
lobe is open to question.

At this point the 7.3 GHz calculations were repeated, but without interpolation of
the backscattered-field data. A spherical locus (R = F) was retained for these
computations. Figure 17 shows the subsystem pattern by this approach. Each
of 64 field values was obtained at a spherical angle (0) pre-computed by means
of a separate driver program to correspond to the (t, 5) net LI2 = 3.0 criterion
on the main reflector arc. Figure 17 should now be compared with Figure 15'.
The domain of interest was contracted to 1000 < 0 < 1660 to conserve cpu time
since the values outside of the extreme geometric bounds do not enter into the
Kirchhoff integration. Significant differences appear between Figure 17 and
Figure 15 due to avoidance of the interpolation process which was previously
routinely carried out using E. and JE analogue subsystem backscattered data
from the GSFC program.

The far-field pattern corresponding to Figure 17 is Figure 18, and should be
compared with Figure 16. Evidently the avoidance of interpolation has improved
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the quality of the result since the sidelobe envelope is no longer monotonically
decreasing, but reproduces the prominent lobe whose peak lies in the vicinity of
6 = 0.5 degrees in the measured pattern. It is unfortunate that the measured

pattern of Figure 13 contained enough noise to mask nulls and raise sidelobe

levels at the -25 db to -30 db level relative to the beam maximum.

Next a parabolic locus, the arc of the main reflector, was used to compute
the backscattered subsystem fields at 7.3 GHz. Interpolation was avoided as in

the preceding case. Figure 19 shows the field amplitude arriving at the surface

of the paraboloid prior to conversion to charge distribution and electric sheet

current. The associated phase is not shown since phase varies rapidly on the

parabolic arc and order is difficult to recognize with the inclusion of the effects

of the flat annular plate. The corresponding far field pattern is Figure 20 and

shows considerable departure from Figure 18 and Figure 16. Most interesting,
perhaps, is the fact that Figure 20, the best estimate of the far-field pattern ob-

tained with the diffraction program at 7.3 GHz, reproduces a first sidelobe peak
at 6 = 0.24 degree and a second sidelobe peak at a = 0.49 degree as in the

measured result, Figure 13. The level of the first sidelobe via the program is

-20.5 db, and is in exact agreement with measured results. The level of the

second sidelobe was computed as -27 db, and a meaningful quantitative com-

parison at this level cannot be made since noise has spoiled the measured pat-

tern beyond 0.30 degree as evidenced by obliteration of nulls beyond this value

of theta. It is noted that the computed result, Figure 20, predicts substantial
null-filling around 0 = 0.375' degree due to the combined effects of the annular

plate subsystem obscuration and strut blockage.

A review of the three approaches used to obtain the 7.3 GHz diffraction pattern

forces the conclusion that the parabolic locus approach without interpolation of

the backscattered subsystem fields is the better approach. This is particularly
true when there is a large departure from the virtual point-source that emanates

an ideal set of spherical wavefronts. The favored approach is also the most de-

manding in terms of cpu time and core requirements. A comparison of compilted

data with several USNRL patterns obtained by satellite at 7.3 GHz, although in

the presence of noise interference, indicated that the spherical-wave expansion
assumption and subsystem data interpolation were responsible for significant

inaccuracy beyond the main beam and first sidelobe computation. The evidence
appeared convincing enough to warrant a re-examination of the 15.3 GHz problem

for the "complete" configuration.

Since Figure 7 and Figure 11 in the body of this report present the backscattered

subsystem pattern on a spherical locus using interpolation and the corresponding
far-field pattern, respectively, the interpolation was avoided in a subsequent

study. This produced Figure 21 for the subsystem and Figure 22 for the far-field

20



patterns. It is noted that although the hyperboloidal cap is confocal with the
paraboloid and all rays incident upon it emerge phase-coherent in the paraboloid

aperture-plane, the\effect of the flat annular plate, situated in the focal-plane,*
is frequency dependent. The influence of the flat plate can once again be seen by
noting the effect on phase and amplitude of the backscattered fields of Figure 21
between the innermost geometric bounds of the flat plate. A comparison between
Figure 7 and Figure 21, as well as between Figure 11 and Figure 22, shows the
variations introduced by interpolation of the subsystem data. The principal
features are very similar although details are seen to vary in the far-field
patterns.

Finally the parabolic locus was employed, without subsystem data interpolation.
Figure 23 and Figure 24 present the computed subsystem and far-field patterns,
respectively. Satellite data were not available for comparison. This pattern,
which represents the culmination of the entire effort, exhibits a first sidelobe
level of -20 db at 8 = 0.115 degree, obliteration or filling of the second null, and
a second sidelobe level of -28 db at 0 = 0.230 degree. The pattern at 15.3 GHz
is characterized by features very similar to those at 7.3 GHz, where the first
and second sidelobe levels were -20 db and -27 db, and where the second null
was also obliterated. Since measured data of high quality were not available at
15.3 GHz it is necessary to appeal to the comparison between measured and
computed results at 7.3-GHz and rely entirely on computed or simulated results
at the higher frequency.

*This would not be true if the plate were midway between the feed point F* and the focus F of

* the paraboloid as this would constitute a degenerate pair of coincident hyperboloids.
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Figure 1. NRL Microwave Space Research Facility (Waldorf, Md.)
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